

 Navigation

 	
 index

 	RoboCup Software latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/robocup-software/checkouts/latest/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/robocup-software/checkouts/latest/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	RoboCup Software latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Documentation.html

 Navigation

 		
 index

 		RoboCup Software latest documentation »

Documentation

It’s important to keep software projects well-documented so that newcomers can quickly get up-to-speed and have a reference when questions arise. One common problem with software documentation is that it is easy for the documentation to get out-of-sync with the code, since the code is constantly updated and documenting it is often an afterthought.

One way to help with this is to put the documentation inline with the code, which is what we do for this project. We use a program called Doxygen [http://www.stack.nl/~dimitri/doxygen/] that parses specially-formatted comments in our code and turns them into a searchable website [http://robojackets.github.io/robocup-software/] that can be easily viewed. Note that this is very similar to a program called javadoc [http://en.wikipedia.org/wiki/Javadoc] that many GT students are probably familiar with using in class.

Another way to improve documentation practices is by requiring code to be well-documented before merging GitHub pull-requests [https://help.github.com/articles/using-pull-requests], which is something we’re getting better at doing.

Doxygen Comment Formats

Doxygen has support for many different languages, but the comment syntax differs a bit. Below are a couple examples, but you should check out the official Doxygen docs [http://www.stack.nl/~dimitri/doxygen/manual/docblocks.html] for more info.

C++

\code
/**

		a normal member taking two arguments and returning an integer value.

		@param a an integer argument.

		@param s a constant character pointer.

		@see Test()

		@see ~Test()

		@see testMeToo()

		@see publicVar()

		@return The test results
*/
int testMe(int a,const char *s);
\endcode

Python

\code{.py}

Documentation for a class.

More details.

class PyClass:

The constructor.
def __init__(self):
 self._memVar = 0;

Documentation for a method.
@param self The object pointer.
def PyMethod(self):
 pass

A class variable.
classVar = 0;

@var _memVar
a member variable

\endcode

Additional Documentation

In addition to turning inline code comments into documentation, Doxygen can also include docs in other formats. This page that you are viewing right now and several others are written in Markdown [http://daringfireball.net/projects/markdown/syntax]. See the files in doc for examples.

Compiling the documentation

To build the documentation website, run doxygen from the root of the robocup-software project. This will place a bunch of files in api_docs/html. Open the index.html file in a browser to view the site.

Our documentation website automagically updates everytime someone pushes the master branch of the repository. This is setup through circle-ci [https://circleci.com] - see the autoupdate-docs.sh script to see how this is done.

Further configuration

Doxgen looks at the Doxyfile in the root of our project to configure things such as which files to include and how to display the output.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		RoboCup Software latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

RobotFirmware.html

 Navigation

 		
 index

 		RoboCup Software latest documentation »

Robot Firmware 2008, 2011

%Robot firmware is anything that runs on the robot itself, rather than on the field computer. It is composed of two main parts: VeriLog HDL code for the FPGA and C code that runs on the microprocessor. The microprocessor handles most of the logic that drives the robots and the FPGA is the bridge that the microprocessor uses to communicate with the hardware.

Both the 2008 and 2011 robot revisions run the same firmware. A DIP switch on the control board is set to tell the firmware what revision it is running on so that it can handle the hardware differences at runtime.

The firmware for the new 2015 revision will run a new codebase that is documented separately.

Startup

The firmware starts out by first initializing certain hardware components, such as setting up I/O pins, starting the system clock, etc.

It then plays the startup sounds to let us know that the board initialized without error. There are also special sounds for dead battery and startup failure.

In many places you’ll notice ‘variables’ being used that begin with ‘AT91C_BASE_PIOA’, which gives access to the I/O pins.

Hardware

The firmware’s job is to accept instructions over the radio and carry them out by controlling the hardware. Here’s a list of the hardware onboard:

		IMU

		Motor drivers - one for each wheel and one for the dribbler

		encoders

		hall sensors [http://en.wikipedia.org/wiki/Hall_effect_sensor] (one per motor)

		kicker

		battery voltage meter (reading from an adc [http://en.wikipedia.org/wiki/Analog-to-digital_converter])

		radio (see protocol information here [https://github.com/RoboJackets/robocup-software/blob/master/doc/radio-protocol-2011.txt])

		USB

		LEDs

		Sounds / songs

		ball sensor

		Robot ID selector

Console

A great way to debug a robot or just to query it for information is to use the console. This is a command-prompt that you can use when the robot is connected via USB. We have udev [http://en.wikipedia.org/wiki/Udev] rules setup so that when the robot is connected via USB, it will show up in the filesystem as /dev/robot. You can use the screen [http://en.wikipedia.org/wiki/GNU_Screen] program in the terminal to connect to it by typing:

sudo screen /dev/robot

From there you can type any of the many available commands to make the robot do things or get info. Type help to see a list of available commands. As of writing this document, the list is:

help
status
reflash
reset
stfu
run
inputs
timers
fpga_reset
fpga_off
fpga_on
fpga_test
spi_test
spi_erase
spi_write
spi_read
radio_configure
radio_start
music
tone
fail
adc
i2c_read
i2c_write
monitor_faults
monitor_halls
read
rx_test
kicker_test
drive_mode
monitor_charge
imu_test
monitor_ball

Sounds

The firmware plays certain sounds at startup or during operation to indicate status:

		0-startup

		1-failure

		2-overvoltage

		3-undervoltage

		4-fuse-blown

		5-fight-song

		6-still-alive

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/comment-bright.png

diagrams/readme.html

 Navigation

 		
 index

 		RoboCup Software latest documentation »

Diagrams

The .dot files are graph specifications written in graphviz. The makefile turns them into image files which are placed in this directory

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/file.png

_static/ajax-loader.gif

RobotFirmware2015.html

 Navigation

 		
 index

 		RoboCup Software latest documentation »

Robot Firmware 2015

%Robot firmware is anything that runs on the robot itself, rather than on the field computer. It is composed of two main parts: VeriLog HDL code for the FPGA and C++ code that runs on the microprocessor (MBED LPC1768). The microprocessor handles most of the logic that drives the robots and the FPGA is the bridge that the microprocessor uses to communicate with some of the hardware components.

Startup

TBD

Hardware

The firmware’s job is to accept instructions over the radio and carry them out by controlling the hardware. Here’s a list of the hardware onboard:

		TBD

Console

A great way to debug a robot or just to query it for information is to use the console. This is a command-prompt that you can use when the robot is connected via USB. We have udev [http://en.wikipedia.org/wiki/Udev] rules setup so that when the robot is connected via USB, it will show up in the filesystem as /dev/mbed0. You can use the screen [http://en.wikipedia.org/wiki/GNU_Screen] program in the terminal to connect to it by typing:

sudo screen /dev/mbed0

From there you can type any of the many available commands to make the robot do things or get info. Type help to see a list of available commands.

help
echo
alias
ping
reset
reboot

 © Copyright 2016.
 Created using Sphinx 1.3.5.

contributing.html

 Navigation

 		
 index

 		RoboCup Software latest documentation »

Contributing Guide

This guide targets new members looking for a guide on contributing to the
project. This guide will focus on the overall picture of effective coding and
contributions. It is not intended to be a technical guide.

Initial Notes

Contributing to open source presents a unique set of challenges, especially when
dealing with large projects. Our project is approximately 50-80k lines of code,
and is still very small by some open source standards.

This should not be discouraging, but rather informative. Most initial
contributions will be small; it takes time to learn the project structure and any
languages and skills each particular project requires. Contributions of any size
will be greatly appreciated, and you should have realistic expectations of what
a first contribution might be (if you dont believe me, you can look at my first
contribution here [https://github.com/RoboJackets/robocup-software/commit/6ce98fc0f8d88b6d145700779e126c0f1b99bb92#diff-71a3477f37bd5b20744e292eda2e3fbc]. It’s two lines of ‘code’). This guide will help you learn to navigate our code base, and
work toward an initial contribution.

Initial Prerequisites

Before starting, you’ll need a Unix-like environment. This means you need to be
running OSX or Ubuntu Linux (other flavors of Debian may work, but we do not
officially support them or FedoraCore).

You’ll also need a GitHub account, which you can create here [http://github.com].
GitHub is a web front-end for a program called Git, which allows multiple people to
work on and contribute to the same code base, at the same time.

Before you can begin work, you’ll need to setup our RoboCup toolchain. You can
run the script located in util/ubuntu-setup or which ever script applies to
your operating system. All of the software technical documentation can be found
here [http://robojackets.github.io/robocup-software/md_doc__build_systems.html].

Git

If you don’t have an overall idea of what the competition is like and what its
goals are, you can brush up at the RoboCup Wiki [http://wiki.robojackets.org/w/RoboCup].

We use Git as our version control system (if you already know git, you can skip
ahead). A Version control system allows many people to code for the same project
at the same time. A “cheat-sheet” of Git commands can be found here [http://www-rohan.sdsu.edu/acm/git.png].

To ease new contributors into Git, I’ll repeatedly use the analogy of the
classroom test.

If you simply want to learn about the workflow we use, and are less interested
in learning the relationships between Git elements, you can skip to the “Overall
Workflow” section.

Master

If Git is like a test, then you can think of the master branch as the final copy
you submit for grading. This copy should have the correct answer, should contain
the most effective or efficient solution, and should be highly neat and readable
for the graders. You probably shouldn’t do any work here, but rather should
explore in other locations such as scrap paper. Once you have several solutions,
you can pick the one you like the best, and more neatly copy the work on to the
test you will hand in.

Our master branch can be found here [https://github.com/RoboJackets/robocup-software].
The code in latest master is always neat and untouched. It can always compile. When you
first clone our codebase from git to view the simulator and soccer, you are
using the code in master. It is in all respects, the master copy from which all
other contributions are derived. Even if you are eventually given permission to
write to master, you should never do so.

Forks

If the professor puts test questions on the whiteboard for the whole class, you
would not be allowed to solve the problems on the board; you would be expected
to copy any relevant information to your own paper and solve the problems there.
This gives you the freedom to play around with rephrasing and solving questions,
without distuirbing others.

Forking a repository on GitHub duplicates the project, but you are given full
write access to your own duplicate. Now you can delete, recreate, and add code
relevent to your contribution without harming the progress of others. This
duplicate is known as your repository and every team member has a fork. This is
different from the main repository which belongs to the team rather than an
individual. Don’t confuse the main repository with the master branch. The
shared, main repository can have incomplete features being worked on by
everyone. The master in your fork and the master in the main repository should
always remain clean.

This also works well when you want a feature that only some people want. You
don’t have to move every contribution from your fork back into the main
repository. When you have contributed something and want it placed in master,
whoever is reviewing your code will look at your fork of the code and compare
it to the master branch.

Branches

Branches are like pieces of scrap paper. You can use them to organize your work
and solutions to the test questions. You should not have work regarding
different problems mixed across several pieces of paper; you may get your
progress confused. You should use one (or several) peices of paper for each
problem you are trying to solve, but should never use one sheet for multiple
questions.

For RoboCup you should create a new branch for every new item you’d like to work
on and for every bug or issue you have to fix. This ensures your master branch
stays clean. You should never solve more than one issue at a time and you should
never have changes or additions for multiple things in the same branch. You can
look at a typical branching layout.

[image: branchingModel]

Remotes

If Git is like a test, then remotes would be copying/collabortaion (cheating
to some people). A remote allows you to view the solution(s) of another
classmate, and pull those additions into your repostory as if they were on the
classroom whiteboard.

In software this can be particularly useful if a team member is working on some
new code that may not be perfect yet, but isn’t ready to be folded into master.
This may happen when you cannot continue work without getting the somewhat
related progress from someone else. You should understand that when pulling from
someone else, they take no responsibility for any problems their updates may
cause for you. This is a decently advanced concept for those new to distributed
environments, and won’t be used too often. We encourage you learn more about
this independently if interested.

Overall Workflow (important)

If you read the previous sections, you may be a little overwhelmed. This section
will describe how these elements interact to form a coherent workflow that will
allow you to make contributions more easily. You can view an overall diagram of
how data moves between team members and GitHub.

[image: githubDataFlow]

Ensure you have a fork of the main repository and that you’ve cloned it onto
your desktop.

You now have a copy of your repository’s master branch avaliable to you. When
you have an idea of what you’d like to contribute, create a new branch before
starting work. Assume you want to write some radio firmware, so you name your
branch radioFirmware.

Your new branch contains a copy of the content of master. Make your additions
and edits now, they will only affect the radioFirmware branch. When done add
and commit the files.

You now have a branch with your contribution, but you haven’t contributed until
the code makes it into the main repository. This involves several steps. First,
any changes others have made in the team’s repository need to be merged into
your code. If there are any conflics Git can’t resolve automatically, it is
your job to resolve [https://help.github.com/articles/resolving-a-merge-conflict-from-the-command-line] those errors. By merging changes into your contribution,
rather than the other way around, you ensure the act of bringing your code into
the team’s repository will go smoothly. This helps when another member of the
team reviews your code as well.

Now that you have a merged branch, you should push the branch to your GitHub.
From GitHub, you can make a pull request [https://help.github.com/articles/using-pull-requests/] from your repository against the
team’s repository. This will notify an older team member that you are ready to
have your contribution reviewed. Requirements for pull request standards are
listed in several sections below. The older team member may ask that you fix
or touch up some things before the request is accepted. This is normal and
common. Once the pull request meets standards, the older member will approve
it, and you changes will be complete.

Keep in mind, you can have several branches at once. If you need to fix a bug
for an existing contribution while working on a new one, you should checkout
the master branch, and then create a new branch named bug fix. It is
critically important that a pull request only address one thing at a time. If it
does not, the request will not accepted until you have separated the items you
have worked on.

If you’ve done all this successfully, you are now an official contributor.

Example (with technical details)

Here we will work through a very possible scenario that may arise while
contributing to the project. At this point, you should have created a GitHub
account and forked the main RoboCup repository. You should also look at
creating a ssh key for GitHub here [https://help.github.com/articles/generating-ssh-keys/].

		Clone your repository.

		You’ve decided to write some radio firmware. Create a new branch for radio
development using git checkout -b radioFirmware. You will automatically be
switched to the new branch,

		Start reasearching and coding.

		A bug in the path planning code has surfaced and the team wants you to try
to fix it. You’re still on the radioFirmware branch, but you should never work
on more than one feature per branch. Return to the master branch using
git checkout master. Now create a new branch for the bug fix like so
git checkout -b pathPlanningHotfix.

		Fix the buggy code.

		Commit, push, and submit a pull request for the bug fix.

		Switch back to the radioFirmware branch with git checkout radioFirmware.
You can now (optionally) delete the pathPlanningHotfix branch once the pull
request has been accepted.

		Continue radio firmware development. If any more urgent problems arises,
you can repeat steps 4-7.

		Push the new radio firmware and submit a pull request.

You Done Messed Up A-a-ron (and you need some help with Git)

Don’t panic! Git saves history every time you commit, and thus you should
always be able to recover and progress you’ve made and undo mistakes affecting
others. When in doubt consult this [http://justinhileman.info/article/git-pretty/git-pretty.png]. Feel free to ask for help at any time, and always ask for help when attempting
anything in the “DangerZone”.

Pull Request Requirements

With large projects, organization and structure can break down fairly quickly
resulting in some bad spaghetti code. We want to avoid this as much as
possible. For this reason, every pull request will be reviewed by a more senior
member of the team, currently Justin Buchanan. If your request isn’t accepted
right away, don’t take it personally. Often your code may work fine, but there
are things you can add or refine. This helps keep our repository clean and will
give you valuable experience participating in a code review process.

Continuous Integration

Continuous Integration (CI) is a tool to help auto-detect problems before they
are merged into the main respository and have a chance to cause problems. Every
time you submit a pull request, the CI tool is run and it will assign a passing
or failing mark to the request. If the CI fails, you will need to fix the error
in your code before the code review. If the reason for the failure isn’t
obvious or it’s a problem in the CI check itself, seek some help.

Content

It’s important that the content of a pull request be kept clean and small. Pull
requests should be less than 1-2k lines of code. The code changes should
reflect one and only one topic (e.g do not include two bug fixes in one pull
request). Content should generally be kept to code and documentation, binary
content, such as images, may be uploaded elsewhere.

Documentation

Code should be documented thoroughly. Generally speaking, you won’t be here for
more than 4(ish) years. Many students will come behind you and will need to use
the code you’ve written.

Each class or file you create should be documented as to what it contains and
what purpose it serves.

Each function should have documentation containing it’s purpose, what
parameters is takes, and what values it returns. Error handling should be
described as well: what errors will it produce, and what assumptions it makes
regarding the validation the caller performs ahead of time. If relevant, state
if the function may block for extended periods of time. If applicable, state if
the function is reentrant or accquires and releases locks.

If the overall set of code is complex and new, consider editing or adding to
the wiki.

C/C++/Python is documented using doxygen. You can view the guide for writing doxygen
comments and documentation here [http://www.stack.nl/~dimitri/doxygen/manual/docblocks.html].

Text file types that are not supported by doxygen should still be documented
using what ever commenting style that format supports.

Style and Formatting

In order to keep the code more readable, code should be formatted and styled
uniformly. This would be difficult to coordinate across multiple users, so we
have a program that automatically restyles the code for you. If you submit a
pull request before restyling the code, it will likely fail the CI check. You
can auto-format the code by running make pretty. If you have a lot of code,
you may have to run this a few times. You can check if the style is passing
by running make checkstyle. If there are no errors, then you are good to go.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

mainpage.html

 Navigation

 		
 index

 		RoboCup Software latest documentation »

 Welcome to the GT RoboJackets RoboCup Documentation Page!

Contributing

There are some areas that are a little sparse and could use a little more info. If you have something to add, we’d love for you to check out the GitHub repo [https://github.com/RoboJackets/robocup-software] and send us your changes!

Getting Started

If you’re new to our codebase, we’d recommend you start by checking out the following key components:

		\ref Processor

		\ref Gameplay::GameplayModule

		The python \ref gameplay.play.Play “Play class”

		\ref SystemState

		\ref OurRobot

A few other classes that are helpful for more understanding are:

		\ref Logger

		\ref RobotFilter

		\ref VisionReceiver

		\ref NewRefereeModule

		\ref GameState

		\ref Planning::RRTPlanner

		\ref Planning::Path

		\ref MotionControl

 © Copyright 2016.
 Created using Sphinx 1.3.5.

UnitTestsAndCI.html

 Navigation

 		
 index

 		RoboCup Software latest documentation »

Testing & Continuous Integration

When working on a large software project, it’s very helpful to have a test suite in place that can be quickly run to verify that key components haven’t been broken by new changes. The test suite won’t cover everything, but the more it covers, the better.

Each time you make tests to the codebase, you should run the test suite with make tests to ensure that you haven’t broken anything that was previously working. Additionally, you should add unit tests for your new code when appropriate.

C++ Unit Tests

We use the googletest [https://code.google.com/p/googletest/] unit testing platform for our C++ code. See the soccer/tests directory for our current tests. You can run these by running the test-cpp executable in the run folder after compiling the project.

Python Unit Tests

We use the standard unittest module for testing our python code. Our unit tests are located at soccer/gameplay/tests and can be run by running ./run_tests.sh form the soccer/gameplay directory.

Continuous Integration

We use a free continuous integration service called CircleCi [http://circleci.com], which recompiles and retests our project everytime we push a new commit to our GitHub repo [http://github.com/robojackets/robocup-software]. Circle-ci works by cloning our git repository into a Ubuntu Docker [https://www.docker.com] Container (similar to a Virtual Machine) each time it receives a notification from GitHub that there are new commits. It then looks at our circle config file circle.yml, which runs other scripts that build and test our code. Robocup-Software uses DoCIF [https://github.com/jgkamat/DoCIF] to manage it’s docker-based CI. Triggered by the circle.yml file, DoCIF builds a baseimage for the project (if any setup files changed), runs the tests listed in config.docif, and sends it’s results back to github to be displayed. On pull requests, you can see the individual logs of any test by clicking ‘details’ on any check.

There is a build status icon on our GitHub project’s main page README that is green when the master branch build succeeds and red when it fails. This lets us quickly ensure that our project build hasn’t been broken. Our goal is to make sure the master branch always builds. We push new code to a separate branch, then merge it only once we verify that it passes the tests on circeci.

Coverage

For every build, a seperate test is run that checks the percentage of lines in our codebase that are run by tests. The results of this are sent to Coveralls [https://coveralls.io/github/RoboJackets/robocup-software] so we can read them easily. In addition, the percent coverage of the master branch is displayed on the main github repository alongside the status badge.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Soccer.html

 Navigation

 		
 index

 		RoboCup Software latest documentation »

Soccer

The ‘soccer’ program is responsible for receiving data from the vision and referee computers and using the information to strategically command the robots on the field (or in the simulator).

[image: Screenshot of the 'soccer' program]

Running with the simulator

Start both soccer and the simulator from the terminal:

$ cd run
$./simulator &
$./soccer -sim

In the simulator, you can move the robots and ball around by clicking and dragging. The ball can also be given a velocity by right-clicking and dragging on it.

Running with real robots

Start soccer:

$ cd run
$./soccer

Also, make sure that the cameras and vision system are on. If so, robots should show up within the soccer window at their correct locations.

Manual Control

To run without using the AI/vision system, click the ‘Manual’ dropdown in the upper right of soccer and select the shell number of the robot you want to control with the joystick.

Here’s a diagram of the button layout for gamepad joystick control:

[image: Joystick]

In addition to the Logitech Gamepad joystick, you can also use the SpaceNavigator 3d mouse. In order to do so, you have to have the spacenavd userspace driver daemon running. Do this with:

$ sudo spacenavd

You can also use the systemd service file included with the libspnav source to have spacenavd run at bootup.

See the docs for SpaceNavJoystick for more info and button layouts.

Graphing

The soccer program has a feature that allows graphing any of the numeric values in the ‘Tree’ tab. Simply right-click on a value field, then click ‘New Chart’ or ‘Add to ____‘ and a graph view will be shown at the bottom of the window.

[image: Graphing]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

MotionControl.html

 Navigation

 		
 index

 		RoboCup Software latest documentation »

Motion Control

Intro

Motion Control encompasses the tasks related to moving physical robots on the field.

Computer-side

The following classes play a role in motion control on the computer:

		MotionConstraints

		OurRobot

		MotionControl

		Pid

Here’s a basic outline of how the motion control system currently works:

		Processor.run()
		GameplayModule.run()
		Play.run()
		Behavior.run()
		OurRobot.move(2dpoint)
		sets targetPos in OurRobot._motionConstraints

		OurRobot.replanIfNeeded()
		looks at _motionConstraints and uses RRTPlanner to generate a new plan if needed

		OurRobot.motionControl().run()
		sets body_x, body_y, and body_w on the robot’s RadioTx::Robot packet

		Processor.sendRadioData()
		builds the RadioTx packet by conglomerating each OurRobot‘s RadioTx::Robot packet

Robot-side

The robots receive instructions from the field computer in the form of protobuf packets sent over the radio. See control.{h, c} to see how the motion control code works. The control code is called from the main() runloop.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Gameplay.html

 Navigation

 		
 index

 		RoboCup Software latest documentation »

Gameplay

This document covers the basics of our high-level soccer code including Plays, Behaviors, and game state evaluation.
This code resides in soccer/gameplay [https://github.com/RoboJackets/robocup-software/tree/master/soccer/gameplay].

As with any complex system, it’s important to have some well-defined structure to keep things manageable.
The soccer program is split up into several different layers for this purpose, with the gameplay layer being the most high-level.
The gameplay layer is managed by the \ref GameplayModule and evaluates the current state of the field (where the robots and ball are) and the state of the game (is it a kickoff, penalty kick, etc).
This information is contained in the c++ \ref SystemState “SystemState” class and the \ref GameState “GameState class”, respectively.
The result of running the \ref GameplayModule is a motion command for each of the robots as well as kick and dribble commands.
Layers of the software stack below the gameplay layer ideally don’t know anything about soccer and just orchestrate robot motion, radio communication, network communication, etc.

When the gameplay module is running, its job is to select the best play from a list of enabled plays by choosing the one with the lowest \ref gameplay.play.Play.score() “score()” value.
Plays are enabled and disabled through the GUI with the checkboxes next to play names.
See the annotated screenshot below for more info.

[image:]

Play Structure

The high-level strategy code is organized to be as modular as possible.
To do this, it’s been split up into three main parts: Skills [https://github.com/RoboJackets/robocup-software/blob/master/soccer/gameplay/skills], Tactics [https://github.com/RoboJackets/robocup-software/blob/master/soccer/gameplay/tactics], and Plays [https://github.com/RoboJackets/robocup-software/blob/master/soccer/gameplay/plays].
There is one Goalie (optionally) and one \ref gameplay.play.Play “Play” object.

Skills are behaviors that apply to a single robot.
They include things like \ref gameplay.skills.capture.Capture “capturing the ball”, \ref gameplay.skills.move.Move “moving to a particular position on the field”, and \ref gameplay.skills.pivot_kick.PivotKick “kicking the ball”.

Tactics can coordinate a single robot or many and generally encapsulate more complex behavior than skills.
This includes things such as \ref gameplay.tactics.coordinated_pass.CoordinatedPass “passing”, \ref gameplay.tactics.defense.Defense “defense”, and \ref gameplay.tactics.positions.goalie.Goalie “the goalie”.

Plays are responsible for coordinating the whole team of robots (although some robots may be unused).
At a given time, the soccer program is running at most one play.

Used together, skills, tactics, and plays form a tree structure with the Play at the root and other behaviors below it.
The C++ GameplayModule tells the current play to run, which in turn tells each of its sub-behaviors to run.

Gameplay structure

Every behavior in soccer is a state machine that subclasses the main \ref gameplay.fsm.StateMachine “StateMachine class”.
This class has methods for adding states and transitions between them as well as utility methods for showing textual and graphical descriptions of a state machine and it’s sub-machines.
One nifty usage of this feature is that we can easily view a diagram of every skill, tactic, and play in our library.

Run this in a terminal in the robocup-software folder to make the diagrams
$ make behavior-diagrams

After running the above command, open up the soccer/gameplay/diagrams folder and browse around to see a diagram for each behavior.
Below is the state diagram for the \ref gameplay.skills.pivot_kick.PivotKick “PivotKick” behavior.
A good exercise if you’re new to writing plays is to compare the PivotKick init() method’s state machine declarations to what you see in the diagram below.

[image: PivotKick state diagram]

Creating a Play

Making a new play is as simple as adding a new python file somewhere inside the soccer/gameplay/plays directory and creating a subclass of Play inside of it.
There is no need to register the play, soccer will see the file in that folder and display it in the Plays tab in soccer.
Generally when writing a new play, it’s a good idea to base its initial structure on an existing play.
A good example play to look at is the \ref gameplay.plays.testing.line_up “LineUp play”.

Every play begins by declaring a python class that subclasses the Play class:

import play

class MyNewPlay(play.Play):
 def __init__(self):
 # call superclass constructor
 super().__init__(continuous=False)

 # TODO: declare states and transitions if needed
 # see fsm.py for more info on these methods.

 # Most plays transition from Start to Running right away
 self.add_transition(behavior.Behavior.State.start,
 behavior.Behavior.State.running,
 lambda: True,
 'immediately')

After declaring the play, it’s time to add in the appropriate states and state transitions to your play.
Every subclass of \ref gameplay.behavior.Behavior “the Behavior class” automatically inherits some pre-defined states including Start, Running, and Completed and is initially started in the Start state.
It’s your job as the writer of a new play to define a state transition from Start to Running or a substate of Running.

The gameplay system automatically declares three methods for every state added to a behavior: on_enter_<NAME>, on_exit_<NAME>, execute_<NAME>.
Where is the name of the state.
This allows us to conveniently execute code whenever we transition states or have code run repeatedly while we’re in the state.

An incredibly simple example of a play that just moves a robot to a certain position on the field could be implemented as follows:

import play
import skills.move
import robocup

class MoveOneRobot(play.Play):
 def __init__(self):
 super().__init__(continuous=False)

 self.add_transition(behavior.Behavior.State.start,
 behavior.Behavior.State.running,
 lambda: True,
 'immediately')

 def on_enter_running(self):
 # Add a "Move" subbehavior that tells a robot to a specified (x, y) location
 m = skills.move.Move(robocup.Point(0, 2))
 self.add_subbehavior(m, name='move', required=True)

 def on_exit_running(self):
 # When the running state is over, we remove the subbehavior
 self.remove_subbehavior('move')

Role Assignment

When writing a play, you are defining a set of actions that should be taken by different robots on the field.
One important thing to note though is that you don’t choose which robots will fulfill these roles directly.
Instead, you can define what attributes a robot should have in order for them to be a good fit for the role.
At each iteration of the main run loop, the \ref gameplay.role_assignment “role assignment system” examines the role requirements for each running behavior and uses an optimal matching algorithm (the hungarian algorithm [https://en.wikipedia.org/wiki/Hungarian_algorithm]) to find the best robot to assign to each role.
In order to implement custom assignment logic for your behavior, you’ll need to override the \ref gameplay.behavior.Behavior.role_requirements “role_requirements() method”.

RoboCup python module

We use a 3rd-party library called Boost Python to create an interface between the C++ code that makes up the majority of our soccer program and the gameplay system that’s written in python.
Boost Python is used to create a python module called “robocup” that python code can import in order to access our C++ classes and functions.
The C++ classes and functions available to the python interface are created through “wrappers” in the robocup-py.cpp [https://github.com/RoboJackets/robocup-software/blob/master/soccer/gameplay/robocup-py.cpp] file.
The “robocup” python module is compiled as a part of our project when you run make and is placed in the run directory as robocup.so.
This can be imported like any other python module like so:

cd robocup-software

Ensure that the latest version of the 'robocup' python module is built
make

The python module is placed in the 'run' directory as 'robocup.so'
cd run

Run python interpreter and import the module
python3
import robocup

Use the help function to see a list of available classes and functions
help(robocup)

Visualization

Many plays provide visualizations for the actions they are performing to make it easier for the user to quickly see what’s happening.
For example, the Defense tactic draws red triangles from opponent robots and the ball to our goal to help visualize our defense’s effective coverage.
This functionality is provided by the many drawing methods provided by the \ref SystemState class.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

BuildSystems.html

 Navigation

 		
 index

 		RoboCup Software latest documentation »

Build Systems

A build system or tool is a program that is responsible for compiling code into the desired output programs and libraries, as well as automating certain tasks. Rather than executing the compiler directly, you tell the build system what files you’d like compiled and let it handle the compiling.

CMake

We use CMake [http://www.cmake.org/] as our main build system. This is configured using CMakeLists.txt files spread throughout our project. CMake works by turning the CMakeLists.txt files into a set of makefiles, which are then executed by the make program.

To build the project using CMake, you could do:

		mkdir build

		cd build

		cmake ..

		make

Assuming everything ran successfully, this would place soccer, simulator, and our other targets in the output folder run.

Rather than executing these commands each time we want to rebuild the project, we’ve added a shortcut using a makefile. This makefile specifies the above set of commands under the default target, so you can now just run make in the root directory to build everything. This makefile also has targets for a few other things. Open it up in a text editor if you’re curious.

Scons

Scons [http://scons.org] is another build system that we use. It serves a similar purpose to CMake, but is based on the python programming language and rather than CMakeLists.txt files, Scons uses SConscript files to specify builds. We use Scons to build our robot and radio base station firmware. We could fairly easily port this to CMake too, but as of now it’s still written with Scons.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

Vision.html

 Navigation

 		
 index

 		RoboCup Software latest documentation »

Vision

About

The RoboCup field has two cameras above the field (one over each half), which are connected to a league-provided ‘vision computer’. This computer takes in images from the two cameras (at about 60Hz) and uses the ssl-vision [https://code.google.com/p/ssl-vision/] program for image processing. It then sends out (x,y) coordinates of all of the robots and the ball over the network (in protobuf packets over UDP) to the two teams’ field computers.

\dot
digraph vision {
rankdir=LR;

subgraph cluster_vision_computer {
 label="Vision Computer";

 SSL_Vision [label="ssl-vision"];
}

{Camera0, Camera1} -> SSL_Vision [label="Firewire"];

subgraph cluster_field_computer {
 label="Field Computer";

 soccer;
}

SSL_Vision -> soccer [label="protobuf over UDP"];

}
\enddot

Dot Patterns

Each robot has a dot pattern on top that lets the vision system recognize which team it’s on and what robot/shell number it is. The center dot is yellow or blue to indicate team and the surrounding 4 dots are a sort of binary to distinguish robot number.

Here’s an image of all of the dot patterns. Shell number 0 is the upper-left and they increase as they go right, then down.

[image: Dot Patterns]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

